WELFARE AND TRADING FREQUENCY IN DYNAMIC DOUBLE AUCTIONS Songzi Du and Haoxiang Zhu

Discussion by Emiliano S. Pagnotta

Imperial College Business School

WFA Seattle, June 19th 2015

Welfare and Trading Frequency

KEY MARKET DESIGN ISSUES

Environment: Competition in demand schedules

- Financial assets (e.g., bonds auctions)
- Other markets: wholesale electricity, bidding for government procurement contracts, management consulting, airline pricing systems
- Trading frequency in Financial Markets
 - Is faster socially better?
 - What is the optimal trading frequency?
 - What are the drivers?

Underlying big question: What is the rationale for (the prevalence of) continuous-time markets?

KEY MARKET DESIGN ISSUES

Environment: Competition in demand schedules

- Financial assets (e.g., bonds auctions)
- Other markets: wholesale electricity, bidding for government procurement contracts, management consulting, airline pricing systems
- Trading frequency in Financial Markets
 - Is faster socially better?
 - What is the optimal trading frequency?
 - What are the drivers?
- Underlying big question: What is the rationale for (the prevalence of) continuous-time markets?

KEY MARKET DESIGN ISSUES

Environment: Competition in demand schedules

- Financial assets (e.g., bonds auctions)
- Other markets: wholesale electricity, bidding for government procurement contracts, management consulting, airline pricing systems
- Trading frequency in Financial Markets
 - Is faster socially better?
 - What is the optimal trading frequency?
 - What are the drivers?
- Underlying big question: What is the rationale for (the prevalence of) continuous-time markets?

THINKING ABOUT FAST TRADING

The Good

Single asset

- Shorter waiting times. Better allocations.
- Faster social learning through information aggregation into prices

Multiple assets

- More effective Hedging
- More effective Arbitrage
- More effective cross-learning

The Bad

- Thinner liquidity
- Higher picking-off risks
- Arm races. Too much intermediation?

THINKING ABOUT FAST TRADING

The Good

Single asset

- Shorter waiting times. Better allocations.
- Faster social learning through information aggregation into prices

Multiple assets

- More effective Hedging
- More effective Arbitrage
- More effective cross-learning

The Bad

- Thinner liquidity
- Higher picking-off risks
- Arm races. Too much intermediation?

And the Ugly

Sniffing, Spoofing, Stuffing,...

Welfare and Trading Frequency

THINKING ABOUT FAST TRADING

The Good

Single asset

- Shorter waiting times. Better allocations
- Faster social learning through information aggregation into prices

Multiple assets

- More effective Hedging
- More effective Arbitrage
- More effective Cross-asset learning

The Bad

- Thinner liquidity
- Higher picking-off risks
- Arm races. Too much intermediation?

THE MODEL IN CONTEXT

Framework related to Vayanos (1999)

- n large traders with strategic non-competitive behavior
- Asymmetric information about private value of trading (endowments)
- Submit demand schedules (as in Kyle, 1989)
- Trades take place at intervals of length $\Delta \ge 0$
- Market clearing mechanism: uniform double-auction

Vayanos' main results

- Welfare loss increases as the time between trades decrease
- Exponential convergence as *n* increases
- In the limit $\Delta \rightarrow 0$, welfare loss is of order 1/n and not $1/n^2$ as in the static double auction literature (e.g., Gresik and Sattherthwaite (1989), Sattherthwaite and Williams (1989))

THE MODEL IN CONTEXT

- Framework related to Vayanos (1999)
 - n large traders with strategic non-competitive behavior
 - Asymmetric information about private value of trading (endowments)
 - Submit demand schedules (as in Kyle, 1989)
 - Trades take place at intervals of length $\Delta \geq 0$
 - Market clearing mechanism: uniform double-auction
- Vayanos' main results
 - Welfare loss increases as the time between trades decrease
 - Exponential convergence as *n* increases
 - In the limit Δ → 0, welfare loss is of order 1/n and not 1/n² as in the static double auction literature (e.g., Gresik and Sattherthwaite (1989), Sattherthwaite and Williams (1989))

THE MODEL IN CONTEXT

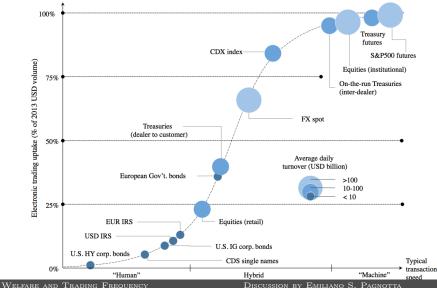
- Framework related to Vayanos (1999)
 - n large traders with strategic non-competitive behavior
 - Asymmetric information about private value of trading (endowments)
 - Submit demand schedules (as in Kyle, 1989)
 - Trades take place at intervals of length $\Delta \geq 0$
 - Market clearing mechanism: uniform double-auction
- Vayanos' main results
 - Welfare loss increases as the time between trades decrease
 - Exponential convergence as *n* increases
 - In the limit Δ → 0, welfare loss is of order 1/n and not 1/n² as in the static double auction literature (e.g., Gresik and Sattherthwaite (1989), Sattherthwaite and Williams (1989))

DU-ZHU'S SETTING

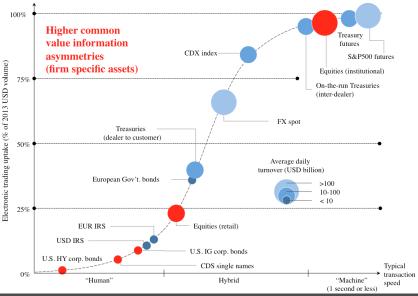
Three key differences with Vayanos (99)

- **1** Asymmetric information about asset payoff.
 - Tractable with linear-quadratic preferences + affine information structure (as in Vives (2011))
- Information arrival: Deterministic ('scheduled') vs. stochastic times
- 3 Heterogeneous speeds
- New Results
 - Slower convergence with asymmetric information regarding common value
 - n^{-4/3} instead of n⁻²; n^{-2/3} instead of n⁻¹ in the continuous-time limit
 - Optimal trading frequency crucially depends on info arrival
 - For deterministic arrival times: slow trading (matches info frequency)
 - For Poisson arrival times: faster frequencies provide valuable flexibility

Heterogeneous speeds: slow traders prefer slower speeds

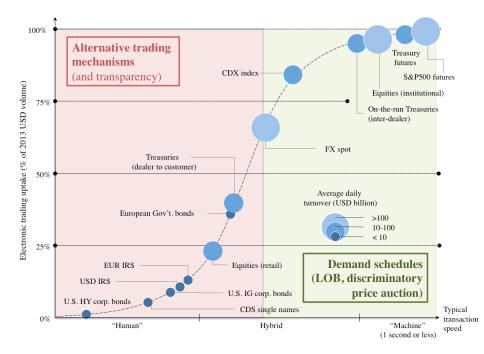

DU-ZHU'S SETTING

Three key differences with Vayanos (99)


- **1** Asymmetric information about asset payoff.
 - Tractable with linear-quadratic preferences + affine information structure (as in Vives (2011))
- 2 Information arrival: Deterministic ('scheduled') vs. stochastic times
- 3 Heterogeneous speeds

New Results

- Slower convergence with asymmetric information regarding common value
 - n^{-4/3} instead of n⁻²; n^{-2/3} instead of n⁻¹ in the continuous-time limit
- Optimal trading frequency crucially depends on info arrival
 - For deterministic arrival times: slow trading (matches info frequency)
 - For Poisson arrival times: faster frequencies provide valuable flexibility
- Heterogeneous speeds: slow traders prefer slower speeds


ASSET CHARACTERISTICS

Welfare and Trading Frequency

AGENDA: TOWARDS A THEORY OF OPTIMAL TRADING FREQUENCIES

- More realistic information structures. Unbundling private value shocks? (e.g., Lo, Mamaysky and Wang, 2004)
- Non-stationary shocks and price impact (Rostek and Weretka, 2015)
- Competition between trading venues (e.g., Pagnotta and Philippon, 2015)
- Alternative trading mechanisms (e.g, Budish, Cramton and Shim, 2013)
- Asynchronous trader arrivals, pick-off risk for limit order traders (e.g., Menkveld and Zoican, 2014)

INVESTOR HETEROGENEITY AND COMPETITION IN AUCTION FREQUENCIES

Connections with Pagnotta Philippon (2015)

- Small traders ('thick' mkts), public knowledge of common value
- Ex-ante investor heterogeneity: Same abilities but different volatility of private value ⇒ ≠ preferences for frequencies
- Increasing auction frequencies is costly
- Auction frequency is an outcome of venues' profit maximization: Δ_j Poisson rate controlled by venue j = 1, ..., J

Equilibrium frequencies are inefficient, lack of convergence

- Inability of venues to perfectly discriminate frequencies (planner cares about infra marginal types)
- Frequency differentiation relaxes price competition

$\underset{speed \ cost \rightarrow 0}{\text{lim}} \text{oligopolistic welfare} \neq \textit{first best welfare}$

Welfare and Trading Frequency

INVESTOR HETEROGENEITY AND COMPETITION IN AUCTION FREQUENCIES

Connections with Pagnotta Philippon (2015)

- Small traders ('thick' mkts), public knowledge of common value
- Ex-ante investor heterogeneity: Same abilities but different volatility of private value ⇒ ≠ preferences for frequencies
- Increasing auction frequencies is costly
- Auction frequency is an outcome of venues' profit maximization: Δ_j Poisson rate controlled by venue j = 1, ..., J
- Equilibrium frequencies are inefficient, lack of convergence
 - Inability of venues to perfectly discriminate frequencies (planner cares about infra marginal types)
 - Frequency differentiation relaxes price competition

$\underset{speed \ cost \rightarrow 0}{\overset{lim}{\quad}} oligopolistic \ welfare \neq first \ best \ welfare$

Welfare and Trading Frequency

Speed cost, speed	D REGULATION, AN	SOCIAL O	DUTCOMES ((WALRASIAN CASE=100)
-------------------	------------------	----------	------------	----------------------

	Corporate Bonds				Equities			S&P500 Futures				
	Δ	\mathcal{P}	ν	\mathcal{W}	Δ	\mathcal{P}	ν	\mathcal{W}	Δ	\mathcal{P}	ν	w
I. Baseline	$\gamma = 0.834, c = 0.0362$			$\gamma = 182.95, c = 0.000157$			$\gamma = 390.63, c = 0.00275$					
Monopoly	36.211	50.00	48.87	72.21	$21,\!986$	50.00	49.59	73.97	117,000	50.00	49.83	74.58
Venue 1	1.044	29.14	16.20	8.77	239.13	29.16	16.52	8.95	516.93	29.17	16.61	9.00
Venue 2	38.132	58.27	57.05	79.67	23,758	58.32	57.88	81.56	126,402	58.33	58.15	82.20
Duopoly	-	87.41	73.25	88.44	-	87.49	74.40	90.51	-	87.50	74.76	91.20
II. $c\downarrow$	$\gamma = 0.834, c = \frac{1}{2}0.0362$			$\gamma = 182.95, c = \frac{1}{2}0.000157$			$\gamma = 390.63, c = \frac{1}{2}0.00275$					
Monopoly	51.555	50.00	49.2	73.02	$31,\!169$	50.00	49.71	74.27	$165,\!625$	50.00	49.88	74.71
Venue 1	1.066	29.15	16.36	8.86	240.6	29.16	16.57	8.97	518.11	29.17	16.63	9.01
Venue 2	55.719	58.3	57.44	80.55	$33,\!677$	58.33	58.01	81.88	178,924	58.33	58.21	82.33
Duopoly	-	87.45	73.80	89.04	-	87.49	74.58	90.85	-	87.50	74.83	91.34
III. $\Delta_{\min} \uparrow$	$\gamma = 0.834, c = 0.0362$			$\gamma = 182.95, c = 0.000157$			$\gamma = 390.63, c = 0.00275$					
Venue 1	1.565	29.99	19.57	9.74	358.69	30.00	19.87	9.92	775.40	30.00	19.95	9.97
Venue 2	40.538	59.99	58.78	81.06	$24,\!587$	60.01	59.57	82.93	130,767	60.01	59.83	83.57
Duopoly	-	89.98	78.35	90.81	-	90.01	79.44	92.85	-	90.01	83.57	93.54

The terms \mathcal{P}, \mathcal{V} , and \mathcal{W} denote participation, trading volume, and welfare, respectively.

- Important technical contribution on key market design issue
 - Asymmetric information about private and common values
 - Highlights role of different stylized ("intuitive") information structures.
- Important Message: there is not a single solution for the market design problem!
 - Asset characteristics, investor heterogeneity matter