Equilibrium HFT by Biais, Foucault and Moinas

Emiliano S. Pagnotta

NYU Stern

LSE, June 8th 2012

OUTLINE

- Model Description
- 2 Results
- Comments
- Relationship with Literature and Policy

Model

MODEL

Glosten and Milgrom (1985):

- Risk neutrality, private values
- Competitive market makers
- •Perfect value signal for some traders

Diamond (1982)

- Search for counterparty (liquidity)
- Grossman Stiglitz (1980)
- Pre-trade investment

MODEL

Glosten and Diamond (1982) **Grossman Stiglitz** Milgrom (1985): Search for (1980)counterparty (liquidity) Risk neutrality, Pre-trade investment private values Competitive market makers Perfect value signal for some traders Composite Unique investment: see v Ingredients + relax search No search externalities

Biais, Foucault, Moinas (2012)

MAIN RESULTS

Positive

- Informational content of trades increases with α , which is also short-term vol. here (price impact)
- ② An increase in α can increase or decrease trading volume
- Strategic complementarities in HFT investments

Normative

- 4 HFT investments are inefficiently high
 - ▶ Note: No social use of information

EMPIRICAL EVIDENCE

- HFT can decrease or increase trading volume
 - ► Found in Jovanovic Menkveld (2010)
- HFT increase short-term volatility
 - ► Counterfactual: Brogaard (2011), using short selling ban of 2008
- HFT make prices more informative
 - ► Found in Hendershott Riordan (2011), Brogaard (2011), etc.
 - ► Is this proof of trading on fundamentals or anticipating order flow?
- Do HFT trade on fundamental information?
- Menkveld (2011): A large HFT firm in Chi-X Europe loses on average $\epsilon 0.45$ per trade on positions < 5sec, and $\epsilon 1.33$ on longer positions
 - ► HFT gets adversely selected, compensates with bid-ask spread and rebates

EMPIRICAL EVIDENCE

- HFT can decrease or increase trading volume
 - ► Found in Jovanovic Menkveld (2010)
- HFT increase short-term volatility
 - ► Counterfactual: Brogaard (2011), using short selling ban of 2008
- HFT make prices more informative
 - ► Found in Hendershott Riordan (2011), Brogaard (2011), etc.
 - ► Is this proof of trading on fundamentals or anticipating order flow?
- Do HFT trade on fundamental information?
- Menkveld (2011): A large HFT firm in Chi-X Europe loses on average $\epsilon 0.45$ per trade on positions < 5sec, and $\epsilon 1.33$ on longer positions
 - ► HFT gets adversely selected, compensates with bid-ask spread and rebates

EMPIRICAL EVIDENCE

- HFT can decrease or increase trading volume
 - ► Found in Jovanovic Menkveld (2010)
- HFT increase short-term volatility
 - ► Counterfactual: Brogaard (2011), using short selling ban of 2008
- HFT make prices more informative
 - ► Found in Hendershott Riordan (2011), Brogaard (2011), etc.
 - ► Is this proof of trading on fundamentals or anticipating order flow?
- Do HFT trade on fundamental information?
- Menkveld (2011): A large HFT firm in Chi-X Europe loses on average ϵ 0.45 per trade on positions < 5sec, and ϵ 1.33 on longer positions
 - ► HFT gets adversely selected, compensates with bid-ask spread and rebates

HFT TRADING AROUND NEWS

• Trades NASDAQ sample. Dependent Variable:

- News: DowJones (millisecond stamps)
- Estimates

Sample	Window	Coeff.	t-stat
All firms	1sec	0.011	1.22
Large	1sec	0.010	1.19
All firms	10sec	0.03	7.18
Large	10sec	0.029	7.109

• Interpretation: NASDAQ sample definition, sample period, static price impact + limited qty. competition (e.g. Holden Subrahmanyam 1992)

HFT Trading around News

• Trades NASDAQ sample. Dependent Variable:

$$\frac{\# \mathsf{Passive}\ \mathsf{HFT}\ \mathsf{Trades}}{\# \mathsf{Passive}\ \mathsf{HFT}\ \mathsf{Trades} + \# \mathsf{Aggresive}\ \mathsf{HFT}\ \mathsf{Trades}}$$

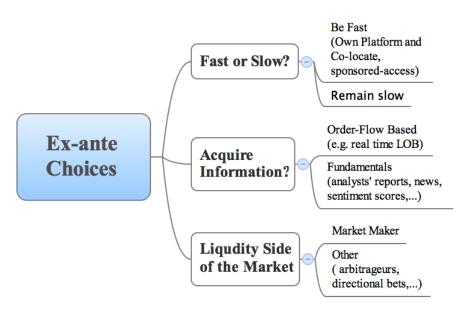
- News: DowJones (millisecond stamps)
- Estimates

Sample	Window	Coeff.	t-stat
All firms	1sec	0.011	1.22
Large	1sec	0.010	1.19
All firms	10sec	0.03	7.18
Large	10sec	0.029	7.109

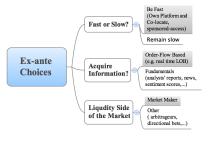
• Interpretation: NASDAQ sample definition, sample period, static price impact + limited qty. competition (e.g. Holden Subrahmanyam 1992)

HFT Trading around News

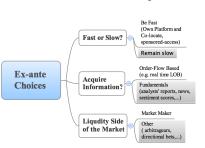
Trades NASDAQ sample. Dependent Variable:

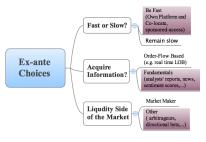

$$\frac{\# \mathsf{Passive} \ \mathsf{HFT} \ \mathsf{Trades}}{\# \mathsf{Passive} \ \mathsf{HFT} \ \mathsf{Trades} + \# \mathsf{Aggresive} \ \mathsf{HFT} \ \mathsf{Trades}}$$

- News: DowJones (millisecond stamps)
- Estimates

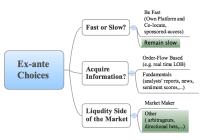

Sample	Window	Coeff.	t-stat
All firms	1sec	0.011	1.22
Large	1sec	0.010	1.19
All firms	10sec	0.03	7.18
Large	10sec	0.029	7.109

 Interpretation: NASDAQ sample definition, sample period, static price impact + limited qty. competition (e.g. Holden Subrahmanyam 1992)


INVESTORS' PROFILES



Traditional HFT (e.g. Getco)



Traditional Active Fund (e.g. Buffett)

Slow Trader

HETEROGENEOUS INFORMATION AND HETEROGENEOUS HORIZONS

- Consider a framework where:
 - Informed Traders are liquidity demanders
 - ▶ Traders can choose to learn about v or $x \perp v$
 - ► Trading horizons can be short or long
- Froot Scharfstein and Stein's (1992) Proposition 3:
 - If trading horizons are short enough there are positive spillovers in information acquisition
 - There is an equilibrium where some traders learn about v and others about x, reducing price efficiency
- Slow traders resemble long-horizon investors (Buffett), but cannot learn
- Fast traders resemble short-horizon investors (Getco), but cannot choose what to learn about

HETEROGENEOUS INFORMATION AND HETEROGENEOUS HORIZONS

- Consider a framework where:
 - Informed Traders are liquidity demanders
 - ▶ Traders can choose to learn about v or $x \perp v$
 - ► Trading horizons can be short or long
- Froot Scharfstein and Stein's (1992) Proposition 3:
 - If trading horizons are short enough there are positive spillovers in information acquisition
 - ► There is an equilibrium where some traders learn about *v* and others about *x*, reducing price efficiency
- Slow traders resemble long-horizon investors (Buffett), but <u>cannot</u> learn
- Fast traders resemble short-horizon investors (Getco), but cannot choose what to learn about

HETEROGENEOUS INFORMATION AND HETEROGENEOUS HORIZONS

- Consider a framework where:
 - Informed Traders are liquidity demanders
 - ▶ Traders can choose to learn about v or $x \perp v$
 - ► Trading horizons can be short or long
- Froot Scharfstein and Stein's (1992) Proposition 3:
 - If trading horizons are short enough there are positive spillovers in information acquisition
 - There is an equilibrium where some traders learn about v and others about x, reducing price efficiency
- Slow traders resemble long-horizon investors (Buffett), but <u>cannot</u> learn
- Fast traders resemble short-horizon investors (Getco), but <u>cannot</u> choose what to learn about

- No liquidity externalities in the model: $\alpha \perp \rho$. Does it matter?
- In the data: HFT ≈ market makers
 - ▶ More HFT competition should render the market more liquid:

$$\rho_S'(\alpha) > 0$$

- ▶ Interesting trade-off: $\psi'(\alpha) < 0$ not obvious
- • In the model: traders search for (limited) trading opportunities (i.e. ho < 1)
 - ▶ If trading opportunities are scarce

$$ho_F'(lpha) < 0$$
 and/or $ho_F'(lpha) < 0$

- ▶ Strong enough to affect informational result?
- Large # of equilibria: exploring $\rho(\alpha)$ may help refining.

- No liquidity externalities in the model: $\alpha \perp \rho$. Does it matter?
- In the data: HFT ≈ market makers
 - More HFT competition should render the market more liquid:

$$\rho_{\mathcal{S}}'\left(\alpha\right) > 0$$

- Interesting trade-off: $\psi'(\alpha) < 0$ not obvious
- In the model: traders search for (limited) trading opportunities (i.e. ho < 1)
 - ▶ If trading opportunities are scarce

$$ho_F'\left(lpha
ight)<0$$
 and/or $ho_F'\left(lpha
ight)<0$

- ▶ Strong enough to affect informational result?
- Large # of equilibria: exploring $\rho(\alpha)$ may help refining.

- No liquidity externalities in the model: $\alpha \perp \rho$. Does it matter?
- In the data: HFT ≈ market makers
 - More HFT competition should render the market more liquid:

$$\rho_{S}'(\alpha) > 0$$

- Interesting trade-off: $\psi'(\alpha) < 0$ not obvious
- • In the model: traders search for (limited) trading opportunities (i.e. ho < 1)
 - ▶ If trading opportunities are scarce:

$$ho_{F}^{\prime}\left(lpha
ight) <$$
 0 and/or $ho_{F}^{\prime}\left(lpha
ight) <$ 0

- Strong enough to affect informational result?
- Large # of equilibria: exploring $\rho(\alpha)$ may help refining.

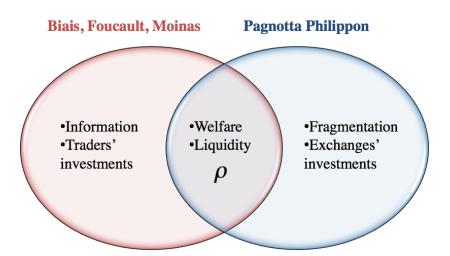
- No liquidity externalities in the model: $\alpha \perp \rho$. Does it matter?
- In the data: HFT ≈ market makers
 - More HFT competition should render the market more liquid:

$$\rho_{S}'(\alpha) > 0$$

- Interesting trade-off: $\psi'(\alpha) < 0$ not obvious
- • In the model: traders search for (limited) trading opportunities (i.e. ho < 1)
 - ▶ If trading opportunities are scarce:


$$ho_F'(lpha) < 0$$
 and/or $ho_F'(lpha) < 0$

- Strong enough to affect informational result?
- Large # of equilibria: exploring $\rho(\alpha)$ may help refining.


CONNECTIONS WITH OWN RESEARCH

CONNECTIONS WITH OWN RESEARCH

WE LIVE IN A FRAGMENTED WORLD

^{*}Securities volume on electronic venues for week ending 16th Sep 2011

MICRO FOUNDATIONS OF SPEED DEMAND

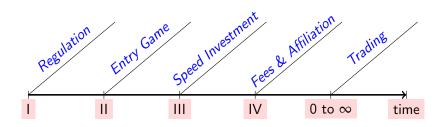
Trading in one market (time 0 to ∞)

- Two assets: cash (yields r), illiquid asset in fixed per-capita supply \overline{a} . Asset holdings a in $\{0,1\}$
- Mass one continuum of investors enjoy flow utility

$$u_{\sigma,\epsilon_t}(a_t) = (\mu + \delta \epsilon_t) a_t$$

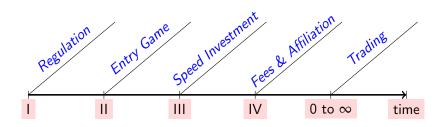
- time-varying type ϵ in $\{+,-\}$, times $\sim \exp(\gamma)$, $\Pr_{\{\epsilon=+\}} = 1/2$
- fixed type $\delta \in [0, \overline{\delta}]$ CDF G (can see as brokers' "clienteles")
- Trading
 - All trades intermediated by exchange (no agency with market makers), no limit orders
 - Contact rate (speed) is ρ
 - Conditional on contact market is Walrasian

MICRO FOUNDATIONS OF SPEED DEMAND


Trading in one market (time 0 to ∞)

- Two assets: cash (yields r), illiquid asset in fixed per-capita supply \overline{a} . Asset holdings a in $\{0,1\}$
- Mass one continuum of investors enjoy flow utility

$$u_{\sigma,\epsilon_t}(a_t) = (\mu + \delta \epsilon_t) a_t$$


- time-varying type ϵ in $\{+,-\}$, times $\sim \exp(\gamma)$, $\Pr_{\{\epsilon=+\}} = 1/2$
- fixed type $\delta \in [0, \overline{\delta}]$ CDF G (can see as brokers' "clienteles")
- Trading
 - All trades intermediated by exchange (no agency with market makers), no limit orders
 - ► Contact rate (speed) is *p*
 - Conditional on contact market is Walrasian

ENDOGENOUS MARKET STRUCTURE

- Entry cost κ
- Marginal cost of speed c
- EQUILIBRIUM
 - Vertical differentiation: fast and slow market
 - ► Fast market chooses optimal co-location fee
 - ▶ Different liquidity levels ⇒ Different Prices

ENDOGENOUS MARKET STRUCTURE

- Entry cost κ
- Marginal cost of speed c

EQUILIBRIUM

- Vertical differentiation: fast and slow market
- ► Fast market chooses optimal co-location fee
- ▶ Different liquidity levels ⇒ Different Prices

- Entry: speed diff. breaks natural monopoly
 - Generally good, but risk of inefficient cost duplication
- Allocation efficiency: more gains from trade
 - Higher average liquidity in a fragmented market (as recent empirical studies find)
- Relaxes fee competition among markets
 - Room for taxes on speed even with perfect information (e.g. MiFID II revision)
- Different prices in fragmented markets
 - ▶ Room for investor protection: market-wide price priority. Good idea?

- Entry: speed diff. breaks natural monopoly
 - Generally good, but risk of inefficient cost duplication
- Allocation efficiency: more gains from trade
 - Higher average liquidity in a fragmented market (as recent empirical studies find)
- Relaxes fee competition among markets
 - Room for taxes on speed even with perfect information (e.g. MiFID II revision)
- Different prices in fragmented markets
 - ▶ Room for investor protection: market-wide price priority. Good idea?

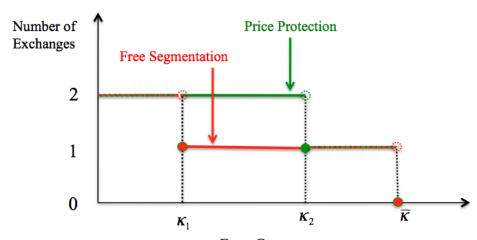
- Entry: speed diff. breaks natural monopoly
 - Generally good, but risk of inefficient cost duplication
- Allocation efficiency: more gains from trade
 - Higher average liquidity in a fragmented market (as recent empirical studies find)
- Relaxes fee competition among markets
 - Room for taxes on speed even with perfect information (e.g. MiFID II revision)
- Different prices in fragmented markets
 - ▶ Room for investor protection: market-wide price priority. Good idea?

- Entry: speed diff. breaks natural monopoly
 - Generally good, but risk of inefficient cost duplication
- Allocation efficiency: more gains from trade
 - Higher average liquidity in a fragmented market (as recent empirical studies find)
- Relaxes fee competition among markets
 - Room for taxes on speed even with perfect information (e.g. MiFID II revision)
- Different prices in fragmented markets
 - ► Room for investor protection: market-wide price priority. Good idea?

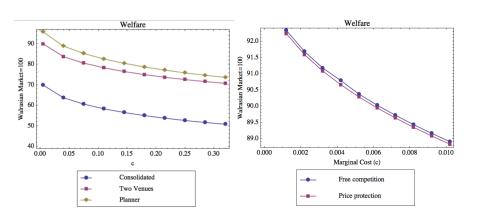
REGULATION OF FRAGMENTED MARKETS

TABLE: Regulations and Investor Protection

SEC	D 111.46		
	Reg.NMS	2005	Trade-through (top of the book)
ESMA	MiFID*	2007	Principles-based
SA, FIEA	FIEA	2007	Principles-based
ROC, CSA	OPR	2011	Trade-through (full book)
FSC	FSCMA**	2011	To be determined
ASIC	MIR	2011	Principles-based
	ROC, CSA	FSC FSCMA**	OC, CSA OPR 2011 FSC FSCMA** 2011


Source: www.fidessa.com

^{*} Currently under revision


^{**} Revision of 2009 version

PRICE PROTECTION AND WELFARE

Key result: price protection works as a subsidy to low-speed exchange
 ⇒ Affects equilibrium fragmentation and allocation efficiency

PRICE PROTECTION AND WELFARE

FINAL REMARKS

- Neat parsimonious model of HFT! Integrates information and welfare
- Much needed given controversies around HFT
- Interesting extensions to explore: heterogeneous information, micro-founding search
- Results help understanding empirical findings
- Plenty of food for thought for regulators and policy makers