Liquidity: What you see is what you get? by Vincent van Kervel

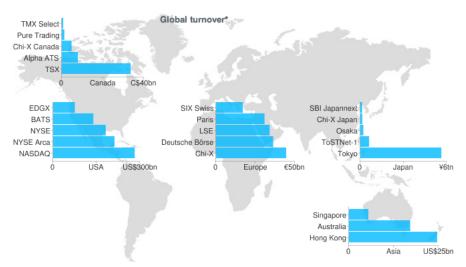
Emiliano S. Pagnotta

NYU Stern

June 1st, 2012

DISCUSSION OUTLINE

- Paper Summary
- Comments on the Paper
- Related Questions


DISCUSSION OUTLINE

- Paper Summary
- 2 Comments on the Paper
- Related Questions

WE LIVE IN A FRAGMENTED WORLD

^{*}Securities volume on electronic venues for week ending 16th Sep 2011

PAPER SUMMARY

- Question: Is the consolidation of depth across trading venues a good statistic of market liquidity?
- Answer: No, it overestimates available liquidity
 - Trading in one venue induces cancellations in other venues
- The Paper
 - ▶ 1. Theoretical Model
 - 2. Documents empirically this fact
- Policy implication: all investors should have access to all markets simultaneously

MODEL.

- Sandas' reduced formed Glosten (1994)
 - Static setting where (uninformed) market makers (MM) build a LOB
 - ▶ Investors then submit orders of random size $x \sim \exp(1/\phi)$
 - Linear price impact λx
- Additional assumptions
 - Two venues (A and B)
 - Proportion α , β of traders only send orders to one venue
 - \triangleright Proportion γ use SORT, send to both in a "sequential" fashion
- Break-even condition yields 2x2 non-linear system for ask depth

$$Q_{A1} = \underbrace{\frac{p_1 - c - X - \phi \lambda}{\lambda}}_{\text{One-venue Depth } Q_{cons,1}} - \underbrace{\frac{\gamma \left(1 - \pi\right) Q_{B1}}{\gamma \left(1 - \pi\right) + \left(\alpha + \gamma \pi\right) \exp\left(\frac{Q_{B1}}{\phi}\right)}}_{\text{Adjustment extra Adv. Sel.}}$$

MAIN RESULTS

Taking partial derivatives one gets

Proposition 1: "Static"

$$\frac{\partial \left(Q_{A1}+Q_{B1}\right)}{\partial \gamma}<0$$

$$Q_{Frag,1} \equiv (Q_{A1} + Q_{B1}) > Q_{Cons,1}$$

PROPOSITION 2: "DYNAMIC"

Consider a one unit trade in venue i

- $\Delta Q_{Frag.1} = -1$ when $\gamma = 1$, and $\Delta Q_{Frag.1} < -1$ when $\gamma < 1$.
- $\Delta Q_{i \neq i,1} < 0$

Appealing Features:

- Nests Sandas (2001)
- Easy to compute numerically (no closed-form)
- ► Straightforward structural estimation (GMM, see Sandas 2001)

Less Appealing Features

- MM: Ad-hoc h(x) linear specification
 - Ok if MM only concerned with information (Huberman Stanzl 2004)
 - But recent studies show HF MM are highly concerned with inventory management
 - ▶ Spillovers are different if total impact is non-linear ⇒ Pricing formulas do not hold

Less Appealing Features

- MM: Ad-hoc h(x) linear specification
 - ▶ Ok if MM only concerned with information (Huberman Stanzl 2004)
 - But recent studies show HF MM are highly concerned with inventory management
 - ▶ Spillovers are different if total impact is non-linear ⇒ Pricing formulas do not hold
- Traders: No meaningful sense of equilibrium
 - ▶ What are informed traders solving? No sense of price informativeness
 - What are liquidity traders solving? No sense of welfare

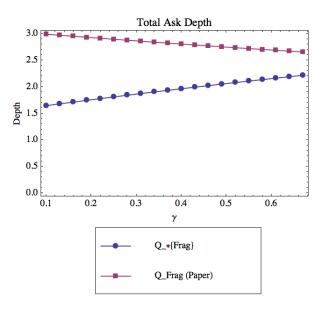
Less Appealing Features

- MM: Ad-hoc h(x) linear specification
 - ▶ Ok if MM only concerned with information (Huberman Stanzl 2004)
 - But recent studies show HF MM are highly concerned with inventory management
 - ▶ Spillovers are different if total impact is non-linear ⇒ Pricing formulas do not hold
- Traders: No meaningful sense of equilibrium
 - ▶ What are informed traders solving? No sense of price informativeness
 - What are liquidity traders solving? No sense of welfare
 - Difficult to interpret outcomes...

MODEL SPECIFICS: ROUTING

- **Key driving assumption**: SORT traders increases adverse selection costs in venue i
 - ► They consume i's top-level liquidity after depleting j's top-level liquidity

MODEL SPECIFICS: ROUTING


- **Key driving assumption**: SORT traders increases adverse selection costs in venue i
 - ► They consume i's top-level liquidity after depleting j's top-level liquidity
- Robustness to alternative specifications?
 - Is this optimal for an informed trader?
 - Asymmetry: Traders can submit orders to both markets, MM only get execution in one. Duplication?

ROUTING (CONT'D)

One Alternative

- SORT routes equal amounts to each venue simultaneously
- Why considering this assumption? Hidden Liquidity!
- Density may be affected
 - ▶ Example: $f(x) \sim U[0,1]$, N markets
 - Orders from sort traders are distributed $\tilde{f}(x) \sim U[0, N^{-1}]$

MEASURING AGGREGATED LIQUIDITY

VISIBLE LIQUIDITY

- As analyzed in Madhavan (1995) in fragmented markets:
 - ▶ Dealers are willing not to disclose trades to reduce direct price competition
 - ► Larger traders prefer less transparent mechanisms
- "Learning by trading": send small quantities to all venues to mine for hidden orders
 - Visibility is then an important strategic dimension
- Why not exploring (inferred) hidden orders in this context?
 - ▶ Different opaqueness across markets? What drives hidden orders for each asset?
 - Rich dataset can guide the theory here!

FOOD FOR THOUGHT

- Role of Competition. Evidence shows c drastically decrease with N ⇒ Would strengthen
- Make-Take Pricing. Venues are not homogeneous here. Possibility of "desintermediation." Natural to explore in this setting
- Going Beyond: Dynamic aspects
 - ▶ Informed Liquidity (e.g. Goetler, Parlour, Rajan (2010), Pagnotta (2011), Rosu (2011)
 - Price behavior following limit orders?
 - ▶ MM actively consume liquidity (e.g. Brogaard 2011)
 - Order size less relevant now, due to order splitting, optimal execution algos,...

- Very nice data set:
 - Consistent LOB records for each venue
 - Millisecond frequency
 - ► Single data provider

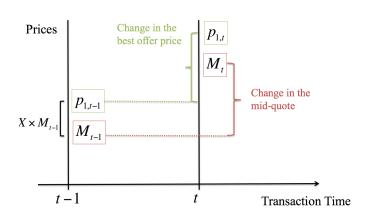
- Very nice data set:
 - Consistent LOB records for each venue
 - Millisecond frequency
 - Single data provider
- Dependent Variable

$$Chg_DepthAsk(X)_{i,t} = DepthAsk(X, M_{t-1})_{i,t} - DepthAsk(X, M_{t-1})_{i,t-1}$$

Main Empirical Result (ask side)

- Very nice data set:
 - Consistent LOB records for each venue
 - Millisecond frequency
 - ► Single data provider

- Very nice data set:
 - Consistent LOB records for each venue
 - Millisecond frequency
 - Single data provider
- Dependent Variable


$$Chg_DepthAsk(X)_{i,t} = DepthAsk(X, M_{t-1})_{i,t} - DepthAsk(X, M_{t-1})_{i,t-1}$$

Main Empirical Result (ask side)

$\pounds \ Buys$	Sec	$_{ m LSE}$	$\operatorname{Chi-X}$	Bats
LSE	0	-0.83*	-0.25*	-0.09*
$_{ m LSE}$	1	-0.80*	-0.30*	-0.14*
$_{ m LSE}$	10	-0.67*	-0.18*	-0.05*
Chi-X	0	-0.21*	-1.31*	-0.18*
Chi-X	1	-0.52*	-1.47*	-0.46*
Chi-X	10	-0.61*	-1.29*	-0.37*
Bats	0	-0.27*	-0.58*	-1.26*
$_{ m Bats}$	1	-0.46*	-0.79*	-1.21*
Bats	10	-0.54*	-0.83*	-1.01*
Turq	0	-0.04	-0.04*	-0.05*
Turq	1	-0.11*	-0.08*	-0.02
Turq	10	-0.13	-0.06	0.04
Nasdaq	0	-0.03	0.03	-0.01
NT 1	1	0.00	0.00	0.04

- Plausible Explanation: Duplication
 - Increasing chances of filling
 - Benefit from time priority
- But this would arise with inventory concerns: avoid trading "too much" in any direction
 - This is not what the model is about
- Not necessarily indication of asymmetric information (model)

• $Chg_DepthAsk(X)_{i,t} < 0$ may simply indicate learning (Kyle 1985, Glosten and Milgrom 1985), instead of duplication

I would like to see

$$Chg_DepthA^*(X)_{i,t} = DepthA(X, M_t)_{i,t} - DepthA(X, M_{t-1})_{i,t-1}$$

- If pure learning one can expect $Chg_DepthA(X)_{i,t} < 0$, Chg DepthA* $(X)_{i,t} \approx 0$
- But this is not "bad"

I would like to see

$$Chg_DepthA^*(X)_{i,t} = DepthA(X, M_t)_{i,t} - DepthA(X, M_{t-1})_{i,t-1}$$

- If pure learning one can expect $Chg_DepthA(X)_{i,t} < 0$, Chg DepthA* $(X)_{i,t} \approx 0$
- But this is not "bad"
- More exploration needed

EMPIRICS: FOOD FOR THOUGHT

- Paper findings will be of interest to sell side investors
- Buy side seeks measures of liquidity that are likely to affect asset returns
- Look at lower frequency measures of liquidity (Amihud's, Hasbrouck's,...) for each asset
 - Before and after the entry of new venues (MiFID I)
 - ▶ DID control candidates: Spain, Italy, Poland,...

REGULATION OF FRAGMENTED MARKETS

- What to do?
 - ► Market-wide Time priority?
 - Market-wide Price priority?

REGULATION OF FRAGMENTED MARKETS

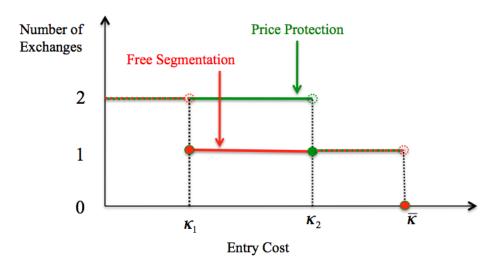
What to do?

- Market-wide Time priority? No predecent to my knowledge
- ► Market-wide **Price** priority? Trade-through. Good idea?

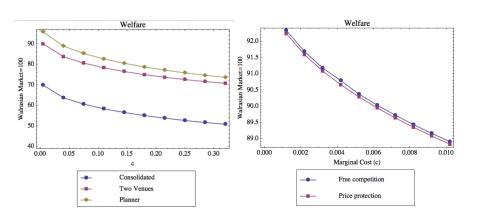
TABLE: Regulations and Investor Protection

Economic Area	Reg. Agency	Regulation	Year	Investor Protection Model
USA	SEC	Reg.NMS	2005	Trade-through (top of the book)
Europe	ESMA	MiFID*	2007	Principles-based
Japan	FSA, FIEA	FIEA	2007	Principles-based
Canada	IIROC, CSA	OPR	2011	Trade-through (full book)
South Korea	FSC	FSCMA**	2011	To be determined
Australia	ASIC	MIR	2011	Principles-based
ć				

Source: www.fidessa.com


^{*} Currently under revision

^{**} Revision of 2009 version


PRICE PROTECTION AND WELFARE

- Pagnotta Philippon (2012) focuses on liquidity in a market with two exchanges (A and B) and heterogeneous investors
- Vertical differentiation by speed (low execution latencies...)
 - Prevents Bertrand outcome
- Say B is faster. Agents β self select and have higher average valuations.
- Key result: price protection works as a subsidy to low-speed exchange ⇒ Affects equilibrium fragmentation and allocation efficiency

PRICE PROTECTION AND ENTRY

PRICE PROTECTION AND WELFARE

CONCLUSIONS

- Very interesting empirical findings!
- Not sure model contributes as much, unless used for some structural estimation
- Good timing!
 - Fragmentation has become a global phenomenon
 - Current global debate on regulation
 - ▶ Need more empirical work in this area
- Equity markets ahead of other asset classes
 - ▶ Lessons useful for options, futures, other newly exchange-traded assets